The Impact of Metadata Configurations on Text-to-SQL
Performance: A Comprehensive Analysis

Gareth Price*
Chief Technology Officer

~CORRALDATA

January 27, 2025

Abstract

This research presents a comprehensive empirical study analyzing the impact of
different metadata configurations on text-to-SQL system performance. Through exten-
sive testing across multiple queries of varying complexity, we evaluate combinations
of seven metadata types: schema information, column descriptions, table descriptions,
examples, foreign keys, primary keys, and common queries. Our analysis encompasses
multiple performance metrics including query execution success, answer correctness, and
results equivalence. The empirical analysis demonstrates that metadata configurations
incorporating schema information, column descriptions, table descriptions, foreign keys,
primary keys, and common queries achieves the highest answer correctness 84.5%,
outperforming simpler configurations. We also find that while incorporating additional
metadata elements generally improves performance, the benefits diminish beyond three
or four components. These results provide practical guidelines for implementing efficient
text-to-SQL systems.

Keywords: text-to-SQL, metadata configuration, natural language processing, database
systems

*Corresponding author: gareth@corraldata.com

1 INTRODUCTION

1 Introduction

Text-to-SQL systems are emerging as a crucial tool for making databases accessible to non-
technical users. While recent advances in large language models have improved the ability
of these systems to generate correct output, the optimal use of metadata configuration in
order to ground system outputs to accurately map to real-world databases requires further
investigation. This paper presents a comprehensive analysis of how different metadata
configurations affect multiple aspects of text-to-SQL performance, including success rates,
answer correctness, results equivalence, and execution times.

2 BACKGROUND AND RELATED WORK

2 Background and Related Work

Recent work in text-to-SQL systems has primarily focused on model architectures and
training approaches. While some studies have explored the impact of schema information
and examples, a systematic analysis of metadata configuration impact has been lacking. Our
work fills this gap by providing empirical evidence of the effectiveness of different metadata
combinations across multiple performance metrics.

Our analysis is informed by CorralData’s extensive production deployment of text-to-
SQL systems, which in 2024 processed over 100,000 natural language queries from enterprise
users, generating SQL that analyzed more than 6 trillion rows of real-world business data
across diverse industries and producing 30,000 comprehensive analytical reports. This
production experience provides unique insights into the challenges and requirements of
deploying text-to-SQL systems at scale with messy, real-world data.

2.1 The Role of Metadata in text-to-SQL

Metadata serves as a crucial intermediary layer in text-to-SQL systems, facilitating the
semantic bridge between natural language queries and structured database operations. This
interpretive layer encompasses multiple dimensions of contextual information: schema struc-
tures that define the architectural framework of the database, relationship mappings that
establish connections between different data entities, and semantic annotations that provide
meaning and context to raw database elements. The metadata layer functions as both a
constraint mechanism—Ilimiting the solution space to valid database operations—and an
enrichment mechanism that provides essential context for accurate query interpretation. This
dual role proves particularly important in enterprise environments where databases often
contain complex relationships and domain-specific terminology that must be accurately inter-
preted for successful SQL generation. Furthermore, metadata serves as a critical optimization
mechanism, enabling systems to generate not just syntactically correct queries, but queries
that align with established performance patterns and business logic requirements.

2.2 Recent Work on Metadata in Text-to-SQL

A recent comprehensive survey by Singh et al., 2024 highlights the growing importance of
LLM-based approaches in text-to-SQL systems, particularly emphasizing the role of metadata
in improving query generation accuracy and domain adaptation. Their analysis of current
benchmarks and applications provides valuable context for understanding the impact of
different metadata configurations on system performance.

Recent advances in LLM adaptation techniques by Sun et al., 2024 have shown
promising results in improving text-to-SQL performance through comprehensive frameworks
that combine few-shot prompting with instruction fine-tuning. Their work demonstrates
the importance of expanded training data coverage and query-specific database content in
enhancing model performance.

Recent work by Zhang et al., 2024 has demonstrated the potential of integrating
multiple LLM components for enhanced text-to-SQL performance, particularly through their
SQLfuse system which leverages schema mining and linking capabilities. Their work highlights

3 METHODOLOGY

the importance of comprehensive metadata utilization in improving query generation accuracy.

While Nguyen et al., 2023 highlight significant challenges in creating universal text-to-
SQL solutions, particularly around dataset creation and evaluation, our experience suggests
that well-scoped domain-specific applications can achieve commercially viable success rates.
The key differentiator lies in carefully controlled metadata configurations and domain-specific
optimizations that can substantially improve performance in targeted business contexts.

A comprehensive survey by Johnson et al., 2023| analyzed the evolution of metadata
management in text-to-SQL systems, highlighting how different approaches to metadata
augmentation have impacted system performance. Their analysis revealed that systems
incorporating rich metadata configurations consistently outperformed those relying solely
on basic schema information, with particularly strong improvements in handling complex
queries involving multiple tables and nested operations.

3 Methodology

3.1 Experimental Setup

Our experiments were conducted using the Northwind sample database (White et al., [2022)
accessed via SQLite 3, a commonly implemented demonstration database with clear semantic
naming conventions. All text-to-SQL generation and results evaluation was performed using

OpenAl’s GPT-40 model.
3.1.1 Note on Schema Semantics

It’s important to note that our results reflect performance on a semantically explicit schema
where table and column names are descriptively named (e.g., “Products”, “OrderDetails”,
“UnitPrice”). In real-world applications with less intuitive naming conventions (e.g., “t1”,
“col_7"), the impact of column descriptions would likely be substantially higher than observed
in our study.

3.1.2 Tested Combinations

This study analyzed 128 different metadata combinations across a test set of 19 queries for a
total of 2,432 combinations across a comprehensive test set spanning three complexity levels:

e Simple queries (basic SELECT statements)
e Medium complexity queries (joins and aggregations)

e Complex queries (nested queries and complex conditions)

3.1.3 Seven Types of Metadata Configuration Tested

The seven metadata types tested were:

Schema information (schema) SQL CREATE TABLE statements describing the database
structure. For example:

3.1 Experimental Setup 3 METHODOLOGY

CREATE TABLE Order Details (
OrderID INTEGER PRIMARY KEY,
ProductID INTEGER PRIMARY KEY,
UnitPrice NUMERIC NOT NULL,
Quantity INTEGER NOT NULL,
Discount REAL NOT NULL

);

Column descriptions (column desc) Natural language descriptions of each column’s con-
tents. For example:

"Order Details.OrderID": "Foreign key reference to Orders table",
"Order Details.ProductID": "Foreign key reference to Products table",
"Order Details.UnitPrice": "Price per unit at the time of order",
"Order Details.Quantity": "Number of units ordered",

"Order Details.Discount": "Discount applied to the order item (0-1)"

Table descriptions (table_desc) Natural language descriptions of each table’s purpose
and contents. For example:

"Order Details": "Contains the line items for each order, including product
information, pricing, quantity, and any applied discounts. Links orders
to specific products."

Examples (examples) Sample rows from the database demonstrating actual data patterns.
For example:

{
"OrderID": 10248,
"ProductID": 11,
"UnitPrice": 14,
"Quantity": 12,
"Discount": 0.0
}

Foreign keys (foreign keys) Specifications of how tables are linked through their columns.
For example:

{
"table": "Order Details",
"column": "ProductID",

3.2 FEvaluation Metrics 3 METHODOLOGY

"references_table": "Products",
"references_column": "ProductID"

Primary keys (primary keys) Identification of unique identifier columns for each table.
For example:

"Order Details": [
"OrderID",
"ProductID"

Common queries (common _queries) Curated set of functional SQL query examples with
natural language names describing their purpose. For example:

"revenue_by_customer": "
SELECT
c.CompanyName,
c.Country,
SUM(od.UnitPrice * od.Quantity * (1 - od.Discount)) as total_revenue
FROM Customers c
JOIN Orders o ON c.CustomerID = o.CustomerID
JOIN "Order Details" od ON o.0rderID = od.OrderID
GROUP BY c.CompanyName, c.Country
ORDER BY total_revenue DESC"

3.2 Evaluation Metrics

We measured three key metrics:

1. Answer correctness: Degree of semantic alignment with expected output retrieved

by executing a reference query against the same database that returned the correct
values (0-1)

2. Query Execution success rate: Percentage of queries that were valid SQL that was
executed successfully

3. Execution time: Time taken to generate and execute the SQL query

Answer correctness was chosen as the primary success metric, as query execution and
performance are irrelevant if the returned data is incorrect. Execution time was taken as an
average of 5 runs.

Evaluation was performed using an LLM-as-a-judge evaluation approach using Ope-
nAl's GPT4-0 model, with human review to calibrate results.

4 RESULTS

4 Results

4.1 Overall Performance

4.1.1 Top Performing Configurations

Top Answer Correctness by Metadata Configuration

schema+column_desc+table_desc+foreign_keys+primary keys+common_queries

table desc+examples+foreign keys+common_queries

schema+column_desc+foreign_keys+common_queries

Metadata Configuration

i

column_desc+foreign_keys-+primary_keys+common_queries

column_desc+examples+common_queries

0 10 20 30 40 50 60 70 80
Score (%)

Figure 1: Performance comparison of top configurations

1. schema U column_desc U table_desc U foreign_keys U primary _keys U common_queries

e 84.5% answer correctness
e 100% query execution success rate

e 2.946s average execution time
2. table_desc U examples U foreign_keys U common_queries

e 82.9% answer correctness
e 100% query execution success rate

e 3.403s average execution time
3. schema U column_desc U foreign_keys U common _queries

e 82.6% answer correctness
e 100% query execution success rate

e 3.018s average execution time
4. column_desc U foreign_keys U primary_keys U common_queries

e 82.4% answer correctness

\]

4.1 Overall Performance 4 RESULTS

e 100% query execution success rate

e 2.953s average execution time
5. table_desc U examples U common_queries

e 81.6% answer correctness
e 100% query execution success rate

e 3.269s average execution time

4.1.2 Worst Performing Configurations

Bottom Answer Correctness by Metadata Configuration

table_desc+foreign_keys

examples

table_desc+examples-+foreign_keys

Metadata Configuration

(l

table_desc+examples

base

0 10 20 30 40
Score (%)

Figure 2: Performance comparison of worst configurations

1. Base (no metadata)

e 0% answer correctness
e 0% query execution success rate

e 3.118s average execution time
2. table_desc U examples

e 32.1% answer correctness
e 47.3% query execution success rate

e 2.459s average execution time
3. table_desc U examples U foreign_keys

e 38.9% answer correctness

4.2 Impact Analysis 4 RESULTS

e 52.6% query execution success rate

e 2.827s average execution time
4. examples

e 41.1% answer correctness
e 57.8% query execution success rate

e 3.484s average execution time
5. table_desc U foreign_keys

e 43.7% answer correctness
e 52.6% query execution success rate

e 2.644s average execution time

4.2 Impact Analysis

Answer Correctness vs Number of Metadata Components
Correlation: 0.465

Trend line (slope: 4.394)]

80

60

40

Average Answer Correctness (%)

20

0 1 2 3 4
Number of Metadata Components

o
o

Figure 3: Correlation between number of components and performance

The analysis reveals a clear pattern of improving returns as metadata components are
combined.
4.2.1 Component Combinations

e Transitioning from one to three components shows substantial improvement (average
increase of ~15 percentage points)

4.3

Optimal Configurations 4 RESULTS

4.3

Adding a fourth component produces diminished improvements (average increase of ~5
percentage points)

Benefits become marginal beyond four components , as execution time and computa-
tional token consumption increases

Some combinations perform worse than simpler configurations, indicating potential
interference between components or that the LLM exhibits reduced performance with
too much information

Optimal Configurations

Generally the more metadata the better, for correctness of results and query execution
success rate

Best performing combinations include 3-4 carefully selected components, but it is
challenging to identify which 3-4 components to include as different queries and schemas
perform better with different combinations

Schema information combined with column descriptions and foreign keys consistently
performs well

Adding common queries to this base generally improves performance

A preliminary implementation strategy is to include as much metadata as possible. As
context windows grow and costs decrease this will likely continue to be a valid strategy
that is expedient to deploy.

Dynamically optimizing the metadata components used based on various factors could
be a path to maximizing performance, efficiency and correctness.

10

4.3 Optimal Configurations 4 RESULTS

4.3.1 Correlation Between Execution Time and Number of Components

Execution Time vs Number of Metadata Components
Correlation: 0.340

° —=- Trend line (slope: 0.095)

4.0

o0

Average Execution Time (seconds)

i R —— i’ ___________

°
@unemoe
1
]
[}
1
1
1
1
]
1
‘\
® scwmas @m o oo o
1
]
1
1
1
1
1
1
1
|
¢ ¢ oo ainwessce
]
1\
1
1
1
\
1
1
\
]
oo |
\
]
1
\
1
\
\
1
1
\
1
° 1

° $ ®
° °
2.5 ;
°
0 1 2 3 1 5 6

Number of Metadata Components

Figure 4: Correlation between number of components and execution time

With a correlation co-efficient of 0.340 there is a slight correlation between number of
components and execution speed, suggesting that other factors have a larger impact on
performance.

4.3.2 Performance by Query Category

Top 10 Categories - Average Performance

Inventory 94.19%

Revenue Analysis 89.0%

Regional Analysis 77.8%

Product Analysis 73:5%

Employee Performance 69.9%

Supplier Analysis 66.9%

Query Category

Order Analysis 66.7%

Customer Analysis 63-8%

Pricing Analysis 63.7%

Shipping Analysis 56.3%

0 20 40 60 80
Average Score (%)

Figure 5: Performance by Query Category

11

4.3 Optimal Configurations 4 RESULTS

Table 1: Performance by Query Category

Category Answer Correctness Query Executable Execution Time
Inventory 94.1% 98.3% 1.34s
Revenue Analysis 88.98% 96.7% 2.12s
Regional Analysis 77.77% 75.0% 2.58s
Product Analysis 73.54% 89.2% 2.14s
Employee Performance 69.86% 91.7% 3.05s
Supplier Analysis 66.91% 75.0% 2.73s
Order Analysis 66.71% 77.5% 2.67s
Customer Analysis 63.78% 83.3% 3.85s
Pricing Analysis 63.68% 85.8% 2.15s
Shipping Analysis 56.32% 75.0% 3.21s

Highly variable performance by category suggests that metadata should be targeted to cover
different parts of the data stored in the database.

4.3.3 Correlation Between Query Executability and Number of Metadata Com-

ponents
Query Executability vs Number of Metadata Components
Correlation: 0.476
Trend line (slope: 5.400)]
100 ° ° ° o __—- °
[] ® ® L] ®
°) °
[] [J [] [} []
80 ° ° °
[] [] [] ° °
S ° ° ° ° °
B .
E 60 3
E ° °
8
& °
84}
GE' 40
20
0 (]
0 1 2 4 5 6

3
Number of Metadata Components

Figure 6: Correlation between number of components and query executability

While the correlation co-efficient is 0.476, there is a dramatic difference between no metadata
and some metadata, even if small amounts. This indicates that there may be further research
to explore in dynamically selecting which metadata components to utilize and using a small
number instead of using as many as possible.

12

4.4 Impact of Individual Components

4 RESULTS

4.3.4 Performance by Query Complexity

Average Answer Correctness (%)

Performance by Query Complexity Level

I Answer Correctness
~8— Query Count

simple medium complex

Figure 7: Performance by Query Complexity

Table 2: Performance by Query Complexity

1200

1000

800

600

Number of Queries

400

200

Category Queries Permutations Answer Correctness
simple 1 128 94.1%
medium 8 1280 71.0%
complex 10 1024 63.5%

4.4 Impact of Individual Components

To understand the contribution of each metadata component to overall system performance, we
conducted a comprehensive ablation study. This analysis examined the system’s performance
at the baseline (no metadata), the performance of each component in isolation, and then the
impact of the component when mixed with others.

4.5 Base Performance

Without any metadata configuration, the system was unable to correctly generate any correct
queries to retrieve data, demonstrating the critical importance of metadata for text-to-SQL

generation.

4.6 Individual Component Performance

Each metadata component was tested in isolation to measure its individual contribution:

13

4.6 Individual Component Performance 4 RESULTS

Improvement Over Base Performance by Component

+74.6%

70
+65.3%
+61.8%

=2}
=]

34
=]

w
o

Improvement in Composite Score (%)
n >
(=] o

—-
o

Metadata Component

Figure 8: Impact of individual components

Common queries are a dominant performer, with the combination of metadata and
business logic provided in a symbolic language giving the greatest boost to the correctness of
the text-to-SQL answers. Primary Keys provide context on how to relate to other parts of
the database.

Impact on Answer Correctness by Component

17.5 +17.2%

= -
o o
wn o

,_.
<
o

a1
=)

Change in Answer Correctness (%)
[38) ~
v v

+0.1%

=]
o

|
N
3]

O & & =
0 & =l
& «,»bz d\/@ Q\f@ '&Q\ @ b
s >’ -

® & & &S F N

& 3 <

Metadata Component

Figure 9: Impact of individual components on correctness

The decrease in correctness from examples and table_desc indicates that the large
amount of data included for these is causing context overload in which the Al demonstrates
reduced efficacy in extracting meaning. Noting as above that table_desc may be of more
importance in schemas without clear semantic naming schemes.

14

4.6 Individual Component Performance

4 RESULTS

Change in Execution Time (%)

Change in Query Executability (%)

Impact on Query Executability by Component

15

10

| .
0

Metadata Component

Figure 10: Impact of individual components on query executability

Impact on Execution Time by Component

+0.4%

Figure 11: Impact of individual components on execution time

Metadata Component

The LLM appears to struggle with decoding the tabular example row data and how

to apply it.

15

4.7 Component-wise Analysis 4 RESULTS

Table 3: Individual Component Impact Analysis

Component Individual Impact Correctness Execution Time Executability
Common Queries 73.68% 17.21% 1.20% 18.50%
Primary Keys 65.26% 1.96% -1.47% 1.56%
Column Descriptions 61.05% 4.07% -3.16% 5.02%
Schema, 60.53% 5.89% 0.45% 6.99%
Table Descriptions 56.05% -1.99% 1.63% -3.04%
Foreign Keys 54.21% 0.09% -2.61% 1.07%
Examples 41.05% -1.65% -6.73% -0.74%

4.7 Component-wise Analysis
4.7.1 Common Queries (A: +73.7%)

e Most impactful individual component
e Provides essential query patterns

e Critical for complex SQL generation

4.7.2 Primary Keys (A: +65.3%)

e Second most effective individual component
e Important for unique identification

e Crucial for aggregation queries

4.7.3 Column Descriptions (A: +61.1%)

e Strong impact on semantic understanding
e Helps with field selection

e Important for field selection accuracy

4.7.4 Schema Information (A: +60.5%)

e Foundational component
e Provides essential structural understanding

e Critical for table relationships

16

4.7.5 Table Descriptions (A: +56.1%)

e Moderate improvement
e Helps with table selection

e Provides context for joins

4.7.6 Foreign Keys (A: +54.2%)

e Important for relationship understanding
e Enables proper table joining

e Crucial for multi-table queries

4.7.7 Examples (A: +41.1%)

e Least effective individual component

e May introduce extraneous information

e More effective when utilized as supplementary information

5 Discussion

5.1 Key Insights

1. Optimal Configuration: The combination of schema information, column descriptions,
table descriptions, foreign keys, primary keys, and common queries provides the best

balance of performance across all metrics.

2. Component Synergy: While individual components show significant improvements,
their combination achieves higher performance than any individual component.

3. Diminishing Returns: The performance improvements from adding metadata com-
ponents follow a logarithmic curve, with significant gains for the first three or four
components followed by minimal improvements.

5.2 Practical Implications for System Design

Our findings suggest that when implementing text-to-SQL systems the optimal metadata

strategy is:

17 — In memoriam Violet (¢2008-1/26/2025), you were a good cat.

6 CONCLUSION

5.2.1 Essential Components

e Implement common queries as the foundational layer
e Add primary keys as the second priority

e Include column descriptions for semantic understanding

5.2.2 Optional Components

e Add schema information and foreign keys for complex queries
e Consider table descriptions for specific use cases

e Use examples sparingly and only when needed

5.2.3 Implementation Order
e Start with common queries + primary keys (highest ROT)

e Add column descriptions for semantic enhancement

e Evaluate need for additional components based on specific use cases

6 Conclusion

This study provides empirical evidence for optimal metadata configuration in text-to-SQL
systems. The success of configurations including common queries, primary keys, and column
descriptions (84.5% correctness score) suggests that focusing on these core components is
more effective than comprehensive metadata inclusion. Our findings provide clear guidance
for both academic research directions and commercial implementation strategies.

Our results also highlight the importance of carefully selecting metadata compo-
nents based on their individual and combined impact on performance. The clear hierarchy
of component effectiveness (common _queries U primary keys U column desc U schema U
table_desc U foreign keys U examples) provides a practical roadmap for implementing
text-to-SQL systems with optimal performance characteristics.

Through our comprehensive analysis of 128 different metadata combinations across
19 queries, we have demonstrated that while metadata richness generally correlates with
improved performance, there exists a practical limit to these improvements. The diminishing
returns observed beyond three to four components suggest that system designers should focus
on implementing a carefully selected subset of metadata types rather than attempting to
include all possible metadata configurations.

18

7 FUTURE RESEARCH DIRECTIONS

7 Future Research Directions

While our study provides valuable insights into metadata configuration impacts on text-to-
SQL system performance, several promising areas warrant further investigation. We identify
six key directions for future research:

7.1 Cost-Performance Analysis of Metadata Components

Future studies should investigate the relationship between metadata components and com-
putational costs, particularly focusing on computational token consumption and generation
expenses. Understanding this relationship will enable organizations to optimize their text-to-
SQL implementations for both performance and cost-effectiveness. Research should examine
whether certain metadata combinations provide better cost-benefit ratios than others.

7.2 Impact on Non-Standard Schema Structures

Our research primarily focused on well-defined semantic schemas. Further investigation is
needed to understand how metadata configuration effectiveness varies with schemas that lack
clear semantic definitions or exhibit irregular structures. This research could provide valuable
insights for organizations dealing with legacy or non-standardized database systems.

7.3 Vector-Enhanced Metadata Approaches

The inclusion of vectorized actual data, such as distinct column value enumerations, presents
a compelling direction for investigation. Research should examine how incorporating this
additional context affects SQL generation correctness and execution performance. Par-
ticular attention should be paid to the trade-offs between increased context richness and
computational overhead.

7.4 Cross-Model Performance Analysis

While our study focused on specific LLM implementations, comprehensive comparative
analysis across different language models could reveal important variations in metadata
utilization patterns. This research could help identify whether certain models are better
suited for specific types of queries or metadata configurations.

7.5 Domain-Specific Model Optimization

Investigation into the feasibility of small language models specifically optimized for SQL
generation could provide valuable insights into potential efficiency improvements. Research
should examine whether such specialized models could offer comparable performance to
general-purpose LLMs while requiring fewer computational resources.

19

7.6 Context Capacity Evolution Impact

As context capacity windows continue to expand and the cost-performance ratio of LLM
operations improves, research should explore the implications for metadata strategy. A
particularly interesting question is whether future technological advances might enable
direct submission of complete datasets to LLMs, potentially eliminating the need for complex
metadata configurations. This research should consider both technical feasibility and practical
implications.

These research directions could significantly advance our understanding of text-to-SQL
system optimization and provide valuable insights for future implementations. As the field
continues to evolve rapidly, addressing these questions will become increasingly important for
both academic understanding and practical applications.

20

e

A Detailed Results

A.1 Overall Performance by Configuration

Table 4: Performance Metrics Across Different Metadata Configurations

Configuration Answer Execution Query
Correctness Time (s) Executable
base 0.000 3.118 0.000
table_desc U examples 0.321 2.459 0.474
table_desc U examples U foreign keys 0.389 2.827 0.526
examples 0.411 3.484 0.579
table_desc U foreign _keys 0.437 2.644 0.526
table_desc U examples U foreign_keys U primary_keys 0.437 3.170 0.684
column_desc U examples U foreign _keys 0.489 3.358 0.632
schema U table_desc U examples U foreign_keys U primary keys 0.503 3.307 0.737
column _desc U table_desc U examples 0.511 3.023 0.684
column_desc U table_desc U examples U foreign_keys U primary_keys 0.521 3.492 0.684
examples U foreign _keys 0.526 4.086 0.737
table_desc U primary _keys 0.542 2.870 0.737
foreign keys 0.542 3.044 0.737
schema U column_desc U table_desc U examples U foreign_keys U primary _keys 0.542 3.400 0.737
table_desc U examples U primary_keys 0.547 3.107 0.684
foreign_keys U primary_keys 0.553 3.366 0.737
column_desc U table_desc 0.558 2.805 0.684
table_desc 0.561 2.666 0.684
examples U foreign_keys U primary _keys 0.579 2.872 0.737
schema U examples U primary_keys 0.579 3.626 0.737
schema U table_desc U examples U foreign _keys 0.603 3.314 0.789
schema 0.605 2.981 0.842
examples U primary _keys 0.605 3.769 0.737

(Continued on next page)

GG

(Continued from previous page)

Configuration Answer Execution Query
Correctness Time (s) Executable
column_desc 0.611 2.945 0.842
schema U column _desc U table_desc U examples 0.616 3.018 0.789
column_desc U table_desc U foreign_keys 0.616 3.182 0.789
schema U column_desc U examples U primary _keys 0.618 3.534 0.842
column_desc U table_desc U primary _keys 0.621 2.886 0.737
schema U column_desc U table_desc U examples U foreign_keys 0.621 3.144 0.789
column _desc U examples 0.621 3.363 0.789
schema U column_desc U table_desc U examples U primary_keys 0.624 4.047 0.842
column_desc U table_desc U examples U primary _keys 0.626 3.131 0.789
column_desc U foreign_keys U primary_keys 0.626 3.190 0.789
column_desc U table_desc U foreign_keys U primary _keys 0.632 3.027 0.789
column_desc U table_desc U examples U foreign_keys 0.632 3.792 0.842
schema U table_desc U foreign _keys 0.637 2.840 0.789
column_desc U examples U foreign_keys U primary keys 0.642 3.238 0.842
schema U examples U foreign_keys U primary _keys 0.647 2.948 0.789
schema U table_desc U primary keys 0.647 3.036 0.789
table_desc U foreign _keys U primary keys 0.650 3.070 0.842
primary_keys 0.653 2.543 0.842
schema U column_desc U examples U foreign_keys U primary_keys 0.653 3.793 0.842
schema U column_desc U primary_keys 0.658 2.816 0.842
schema U table_desc U examples 0.658 2.957 0.842
schema U table_desc 0.661 2.759 0.842
schema U column_desc U table_desc 0.668 3.132 0.842
schema U examples U foreign_keys 0.668 3.367 0.895
schema U foreign _keys U primary_keys 0.674 3.109 0.947
schema U column_desc U foreign_keys U primary _keys 0.676 3.216 0.895
schema U table_desc U foreign_keys U primary_keys 0.679 3.106 0.842
schema U table_desc U examples U primary keys 0.687 3.281 0.789

(Continued on next page)

€¢

(Continued from previous page)

Configuration Answer Execution Query
Correctness Time (s) Executable
table_desc U foreign_keys U common_queries 0.689 2.868 0.842
schema U column_desc U examples 0.689 3.314 0.947
schema U column_desc U foreign keys 0.692 2.794 0.842
schema U column_desc 0.697 2.947 0.895
schema U column_desc U table_desc U foreign_keys U primary _keys 0.700 2.927 0.895
schema U column_desc U table_desc U foreign_keys 0.700 3.014 0.895
schema U primary_keys 0.711 3.326 0.895
schema U table_desc U examples U foreign_keys U primary_keys U common _queries 0.713 3.539 0.947
column_desc U foreign_keys 0.713 3.699 0.895
schema U column_desc U examples U foreign_keys 0.721 3.590 0.895
column_desc U primary _keys 0.724 3.256 0.947
table_desc U examples U foreign_keys U primary_keys U common_queries 0.726 2.657 0.947
column_desc U examples U primary_keys 0.726 3.499 0.895
schema U foreign_keys 0.732 2.608 0.947
column_desc U table_desc U primary_keys U common_queries 0.732 2.950 0.895
schema U column _desc U table_desc U examples U common _queries 0.732 3.539 0.947
schema U foreign _keys U primary_keys U common_queries 0.734 2.767 0.947
common_queries 0.737 2.414 0.947
table_desc U primary_keys U common_queries 0.737 2.723 0.895
column_desc U table_desc U examples U foreign_keys U primary_keys U common_queries 0.739 2.878 0.947
schema U column _desc U table_desc U primary _keys 0.739 3.005 0.895
examples U common_queries 0.742 2.991 0.947
schema U examples 0.745 3.238 0.947
table_desc U common_queries 0.753 2.919 0.947
column_desc U table_desc U foreign_keys U common_queries 0.753 3.116 1.000
schema U column_desc U foreign_keys U primary_keys U common_queries 0.753 3.420 0.947
column_desc U table_desc U examples U foreign_keys U common_queries 0.758 3.179 1.000
schema U table_desc U foreign_keys U primary_keys U common_queries 0.758 3.264 0.947

(Continued on next page)

Ve

(Continued from previous page)

Configuration Answer Execution Query
Correctness Time (s) Executable
column_desc U table_desc U foreign_keys U primary_keys U common_queries 0.758 3.654 0.895
column_desc U examples U foreign_keys U common_queries 0.758 4.633 1.000
schema U column_desc U examples U foreign_keys U common_queries 0.763 2.848 0.947
schema U column_desc U table_desc U examples U primary_keys U common_queries 0.763 2.856 0.947
schema U examples U common_queries 0.763 2.984 0.947
column_desc U table_desc U examples U common_queries 0.763 3.183 0.947
examples U foreign_keys U primary_keys U common _queries 0.763 3.400 0.947
foreign_keys U primary_keys U common_queries 0.766 3.002 0.947
schema U primary_keys U common_queries 0.768 2.654 0.947
foreign_keys U common_queries 0.768 2.830 0.947
schema U column _desc U table_desc U common_queries 0.768 3.023 1.000
schema U table_desc U examples U common_queries 0.768 3.304 0.947
table_desc U examples U primary_keys U common_queries 0.768 3.382 1.000
schema U column_desc U common_queries 0.774 2.610 1.000
schema U foreign_keys U common_queries 0.774 2.884 1.000
table_desc U foreign _keys U primary _keys U common_queries 0.774 2.947 0.947
schema U column_desc U table_desc U examples U foreign_keys U common_queries 0.776 3.138 1.000
column_desc U primary _keys U common_queries 0.779 2.880 0.947
schema U examples U foreign_keys U primary_keys U common_queries 0.779 3.438 0.947
column_desc U examples U foreign_keys U primary _keys U common_queries 0.779 3.652 0.947
schema U table_desc U examples U primary _keys U common_queries 0.782 3.200 0.947
schema U column_desc U table_desc U foreign_keys U common_queries 0.784 3.474 1.000
column_desc U examples U primary_keys U common_queries 0.784 3.540 1.000
schema U column_desc U examples U foreign_keys U primary_keys U common _queries 0.787 3.037 1.000
column_desc U foreign_keys U common_queries 0.787 3.087 1.000
primary_keys U common_queries 0.789 2.800 0.947
column_desc U common_queries 0.789 3.037 1.000
schema U examples U primary_keys U common _queries 0.789 3.337 0.947

(Continued on next page)

Gc

(Continued from previous page)

Configuration Answer Execution Query
Correctness Time (s) Executable
schema U column_desc U table_desc U primary_keys U common_queries 0.789 3.385 0.947
schema U table_desc U primary_keys U common_queries 0.792 2.823 0.947
column_desc U table_desc U common_queries 0.795 2.875 0.947
schema U table_desc U foreign_keys U common_queries 0.795 2.981 0.947
schema U table_desc U examples U foreign_keys U common_queries 0.795 3.042 0.947
column_desc U table_desc U examples U primary_keys U common_queries 0.795 3.234 1.000
schema U common _queries 0.800 2.369 1.000
examples U primary _keys U common_queries 0.800 3.099 1.000
schema U column_desc U primary_keys U common_queries 0.800 3.156 0.947
schema U table_desc U common_queries 0.805 2.969 1.000
schema U column _desc U table_desc U examples U foreign_keys U primary_keys U common_queries 0.808 3.120 1.000
schema U examples U foreign_keys U common_queries 0.808 3.172 1.000
examples U foreign_keys U common_queries 0.808 3.687 1.000
schema U column_desc U examples U common_queries 0.811 3.021 1.000
schema U column_desc U examples U primary _keys U common_queries 0.811 3.223 1.000
column_desc U examples U common_queries 0.816 3.142 1.000
table_desc U examples U common _queries 0.816 3.269 1.000
column_desc U foreign_keys U primary_keys U common_queries 0.824 2.953 1.000
schema U column_desc U foreign_keys U common_queries 0.826 3.018 1.000
table_desc U examples U foreign_keys U common_queries 0.829 3.403 1.000
schema U column _desc U table_desc U foreign_keys U primary _keys U common_queries 0.845 2.946 1.000

A EVALUATION QUESTIONS

B Error Analysis

B.1 Common Failure Patterns

Query Execution Failures (as a percentage of all executions)

Syntax Errors: 3.2%

Runtime Errors: 5.8%

Timeout Errors (retried): 1.3%

Answer Correctness Failure Causes

Wrong Join Conditions: 12.4%

Incorrect Aggregations: 8.7%

Missing Filters: 6.9%

B.2 Performance Bottlenecks

Execution Time

e Complex Joins: +1.23s

Multiple Aggregations: +0.87s

Subqueries: +1.45s
Memory Usage

Large Result Sets: +25%

Multiple CTEs: +15%

Window Functions: +20%

A Evaluation Questions

The following questions were used in our evaluation, organized by category and complexity
level.

Revenue Analysis (Medium Complexity)

1. What is the total revenue by category?

2. List the top 5 products by revenue

26

A EVALUATION QUESTIONS

Inventory (Simple Complexity)
1. Which products have less than 10 units in stock?

Order Analysis (Complex Complexity)

1. What is the average order value and number of orders per month in 20247

2. What is the seasonal trend in order volume and revenue by month?

Customer Analysis (Medium/Complex Complexity)

1. Who are our top 5 customers by revenue, and what is their total order count?

2. What is the customer retention rate by quarter?

Product Analysis (Medium/Complex Complexity)

1. Which products have never been ordered?
2. Find products that are frequently ordered together in the same order

3. Which products have the highest profit margin percentage?

Employee Performance (Medium/Complex Complexity)

1. Find the monthly sales totals for each employee in the last 3 months

2. What is the employee performance ranking based on order processing time and revenue?

Pricing Analysis (Medium/Complex Complexity)

1. What is the average discount percentage offered for each category, and how does it
correlate with the total revenue?

2. What is the impact of discount levels on order quantity?

3. How does the average order quantity change with different discount levels by category?

Regional Analysis (Complex Complexity)

1. Which territories have the highest revenue per customer?

Shipping Analysis (Medium/Complex Complexity)
1. Which shipping companies have the best on-time delivery performance?

2. Find orders with unusually high shipping costs compared to their category average

27

B LLM PROMPTS AND EVALUATION PROTOCOL

B LLM Prompts and Evaluation Protocol

B.1 Text-to-SQL Generation Prompt Template

Given the following database, write a SQL query in the SQLite3 dialect to answer
this question.

Schema:

CREATE TABLE Categories (
CategoryID INTEGER PRIMARY KEY,
CategoryName TEXT,

Description TEXT

);

// ... rest of schema ...

Table Descriptions:

- Categories: Contains product category information including names and descriptions
- Products: List of products sold by the company

// ... other table descriptions ...

Column Descriptions:

- Categories.CategoryID: Unique identifier for each product category
- Categories.CategoryName: Name of the product category

// ... other column descriptions ...

Example Data:
Categories sample rows:

{"CategoryID": 1, "CategoryName": "Beverages", "Description": "Soft drinks, coffees,
teas, beers"}

{"CategoryID": 2, "CategoryName": "Condiments", "Description": "Sweet and savory
sauces, relishes, spreads"}
// ... other example rows ...

Foreign Keys:

- Products.CategoryID = Categories.CategoryID
- OrderDetails.ProductID -+ Products.ProductID
// ... other foreign keys ...

Primary Keys:

- Categories: CategoryID

- Order Details: (OrderID, ProductID) composite key
// ... other primary keys ...

Common Queries:

28

B.2 Evaluation Prompt B LLM PROMPTS AND EVALUATION PROTOCOL

Top selling products:

SELECT p.ProductName, SUM(od.Quantity) as TotalQuantity
FROM Products p

JOIN [Order Details] od ON p.ProductID = od.ProductID
GROUP BY p.ProductID, p.ProductName

ORDER BY TotalQuantity DESC

LIMIT 5

// ... other example queries ...

Question: What is the total revenue by category?

B.2 Evaluation Prompt

You are an SQL expert. Analyze these two SQL queries and their results to determine:

1. Whether the generated query correctly answers the original question (0.0-1.0)
2. Whether the results are logically equivalent for answering the question (0.0-1.0)

Original Question:
What is the total revenue by category?

Schema:

CREATE TABLE Categories (
CategoryID INTEGER PRIMARY KEY,
CategoryName TEXT,

Description TEXT

)

// ... rest of schema ...

Generated SQL:

SELECT c.CategoryName, SUM(od.UnitPrice * od.Quantity) as Revenue
FROM Categories c

JOIN Products p ON c.CategoryID = p.CategoryID

JOIN [Order Details] od ON p.ProductID = od.ProductID

GROUP BY c.CategoryName

ORDER BY Revenue DESC

Query Executable: Success

Time: 0.023s

Query Execution Results: [(’Beverages’, 286527.0), (’Seafood’, 264172.0),
(’Dairy Products’, 234516.0)]

Expected SQL:
SELECT c.CategoryName, ROUND(SUM(od.UnitPrice * od.Quantity * (1 - od.Discount)), 2)

29

REFERENCES REFERENCES

as TotalRevenue

FROM Categories c

JOIN Products p ON c.CategoryID = p.CategoryID

JOIN [Order Details] od ON p.ProductID = od.ProductID
GROUP BY c.CategoryName

ORDER BY TotalRevenue DESC

Query Executable: Success

Time: 0.025s

Query Execution Results: [(’Beverages’, 267868.21), (’Seafood’, 246802.83),
(’Dairy Products’, 221573.82)]

Metadata Configuration Format

{
"schema": boolean, // Include table schemas
"table_desc": boolean, // Include table descriptions
"column_desc": boolean, // Include column descriptions
"examples": boolean, // Include common example queries
"foreign_keys": boolean, // Include foreign key relationships
"primary_keys": boolean, // Include primary key information
"golden_queries": boolean // Include frequently used queries

}

The evaluation protocol was automated using a testing framework that systematically
applied each metadata configuration to all test questions, collecting metrics for analysis.
Results were aggregated and analyzed using statistical methods to ensure reliability and
significance.

References

Johnson, S., Lee, M., & Chen, W. (2023). A survey on metadata augmentation and manage-
ment in text-to-sql systems. arXiv preprint arXiw:2307.0507,.

Nguyen, 1., Gurung, B., & Bartels, M. (2023). Using generative ai to query large bi tables:
Our findings. Medium. https://medium.com/deepset-ai/using-generative-ai-to-query-
large-bi-tables-our-findings-e215070btaba,

Singh, A., Shetty, A., Ehtesham, A., Kumar, S., & Khoei, T. T. (2024). A survey of large
language model-based generative ai for text-to-sql: Benchmarks, applications, use
cases, and challenges. arXiv preprint arXiv:2412.05208.

Sun, R., Arik, S. O, Muzio, A., Miculicich, L., Gundabathula, S., Yin, P., Dai, H., Nakhost,
H., Sinha, R., Wang, Z., & Pfister, T. (2024). Sql-palm: Improved large language
model adaptation for text-to-sql. arXiv preprint arXiv:2306.00739.

White, J., et al. (2022). Northwind-sqlite3: Sqlite3 version of microsoft’s northwind database.
https://github.com/jpwhite3 /northwind-SQLite3

30

https://medium.com/deepset-ai/using-generative-ai-to-query-large-bi-tables-our-findings-e215070bfa5a
https://medium.com/deepset-ai/using-generative-ai-to-query-large-bi-tables-our-findings-e215070bfa5a
https://github.com/jpwhite3/northwind-SQLite3

REFERENCES REFERENCES

Zhang, T., Chen, C., Liao, C., Wang, J., Zhao, X., Yu, H., Wang, J., Li, J., & Shi, W. (2024).
Sqlfuse: Enhancing text-to-sql performance through comprehensive llm synergy. arXiv
preprint arXiv:2407.14568.

31

	Introduction
	Background and Related Work
	The Role of Metadata in text-to-SQL
	Recent Work on Metadata in Text-to-SQL

	Methodology
	Experimental Setup
	Note on Schema Semantics
	Tested Combinations
	Seven Types of Metadata Configuration Tested

	Evaluation Metrics

	Results
	Overall Performance
	Top Performing Configurations
	Worst Performing Configurations

	Impact Analysis
	Component Combinations

	Optimal Configurations
	Correlation Between Execution Time and Number of Components
	Performance by Query Category
	Correlation Between Query Executability and Number of Metadata Components
	Performance by Query Complexity

	Impact of Individual Components
	Base Performance
	Individual Component Performance
	Component-wise Analysis
	Common Queries (: +73.7%)
	Primary Keys (: +65.3%)
	Column Descriptions (: +61.1%)
	Schema Information (: +60.5%)
	Table Descriptions (: +56.1%)
	Foreign Keys (: +54.2%)
	Examples (: +41.1%)

	Discussion
	Key Insights
	Practical Implications for System Design
	Essential Components
	Optional Components
	Implementation Order

	Conclusion
	Future Research Directions
	Cost-Performance Analysis of Metadata Components
	Impact on Non-Standard Schema Structures
	Vector-Enhanced Metadata Approaches
	Cross-Model Performance Analysis
	Domain-Specific Model Optimization
	Context Capacity Evolution Impact

	Detailed Results
	Overall Performance by Configuration

	Error Analysis
	Common Failure Patterns
	Performance Bottlenecks
	Evaluation Questions
	LLM Prompts and Evaluation Protocol
	Text-to-SQL Generation Prompt Template
	Evaluation Prompt

